domingo, 26 de enero de 2014

VALOR ABSOLUTO

VALOR ABSOLUTO
¿QUE ES EL VALOR ABSOLUTO?
El valor absoluto de un número es, el mismo número si el número es positivo o cero, y el opuesto si el número es negativo.
Se suele decir que el valor absoluto de un número es el número sin tener en cuenta su signo. Por ejemplo: abs (5) = |5| = 5, abs ( 3´4) = |3´4| = 3´4 abs (-2 ) = | -2| = 2, abs ( 0) = |0| = 0, abs ( -34´7) = | -34´7| = 34´7
Sirve por ejemplo para calcular la distancia entre dos puntos: La distancia entre los puntos x = 5 y x = 7 es d = | 7 - 5| = 2
Claramente la distancia entre x = 7 y x = 5 es la misma por lo que d = | 5 - 7| = | -2| = 2

El valor absoluto está relacionado con las nociones de magnitud, distancia y norma en diferentes contextos matemáticos y físicos. El concepto de valor absoluto de un número real puede generalizarse a muchos otros objetos matemáticos, como son los  anillos ordenados, cuerpos o espacios vectoriales.

















Objetivos de Aprendizaje

Encontrar el valor absoluto de números y expresiones.
Representar valores absolutos con declaraciones numéricas y en la recta numérica.

Introducción

El álgebra normalmente requiere que seamos cuidadosos no sólo con el tamaño y el valor sino también con el signo. No es lo mismo -10 que 10. 3 + 7 nos da un resultado distinto que 3 + (-7). Pero hay circunstancias en las que el signo no importa, en matemáticas y en la vida cotidiana. ¿Alguna vez has tropezado al bajar de unas escaleras eléctricas? No importa tanto si te estás moviendo más rápido o más lento que el suelo, es la magnitud de la diferencia la que te hace perder el equilibrio. O piensa en una larga caminata por el campo, tus pies se lastimarán sin importar si vas hacia el norte o hacia el sur. La dirección no importa, sólo la distancia.
En matemáticas, hay un concepto para tratar con situaciones donde el tamaño importa más que el signo. Se llama valor absoluto. El valor absoluto de un número consiste en su valor, sin importar su signo.

Valor absoluto – enfoque numérico

El valor absoluto puede ser explorado ya sea numérica o gráficamente. Numéricamente, el valor absoluto se indica encerrando el número, variable o expresión dentro de barras verticales, así:
|20|
|x|
|4n − 9|

Cuando tomamos el valor absoluto de un número, éste es siempre positivo o cero. Si el valor original ya es positivo o cero, el valor absoluto es el mismo. Si el valor original es negativo, simplemente nos deshacemos del signo. Por ejemplo, el valor absoluto de 5 es 5. El valor absoluto de -5 es también 5.



Recuerda, en situaciones de valor absoluto no estamos cambiando la posición ni la dirección de un número, sólo estamos ignorando esos detalles.
 Ten cuidado de no confundir las |barras de valor absoluto| con los (paréntesis) o los [corchetes]. No son los mismos símbolos, y las reglas que los evalúan son diferentes.
 Por ejemplo, -1(-3) = 3. Los signos negativos dentro y fuera de los paréntesis se cancelan cuando son multiplicados.
Pero -1|-3| = -3. No puedes multiplicar a través de las barras de valor absoluto, por lo que primero tienes que encontrar el valor absoluto del número contenido entre ellas. Como el valor absoluto de -3 es 3, la operación se convierte en -1(+3).
Cuando las barras de valor absoluto contienen una expresión que incluye operaciones, la expresión debe ser evaluada antes de encontrar el valor absoluto. Considera la expresión |6 − 4|. Antes de que podamos obtener el valor absoluto de la expresión, tenemos que efectuar la resta. Cuando hacemos eso, |6 − 4| se convierte |2|. Ahora podemos calcular el valor absoluto de la expresión — es el valor absoluto de 2, el cual es 2.
|6 − 4| = |2| = 2
De manera similar, para la expresión |15 − 21|, debemos realizar primero las operaciones dentro de las barras de valor absoluto.

|15 − 21| = |-6| = 6

¿Cuál de los siguientes es el valor correcto de |6 − 9|?
A) -3
B) 3
C) (-3)
D) 15
Respuesta:
A) -3
Incorrecto. El valor absoluto de un número es siempre positivo o cero. Si el número original es negativo, su valor absoluto es el mismo número sin el signo negativo. La respuesta correcta es 3.
 B) 3
Correcto. |6 − 9| = |-3| = 3.
 C) (-3)
Incorrecto. |6 − 9| = |-3|. Las barras de valor absoluto no son lo mismo que los paréntesis. La respuesta correcta es 3.
 D) 15

Incorrecto. 15 es 6 + 9. Debemos realizar la operación dentro de las barras antes de deshacernos del signo negativo. |6 − 9| = |-3| = 3. La respuesta correcta es 3.

¿COMO SE RESUELVE EL VALOR ABSOLUTO?

Vamos a empezar primero por la definición de valor absoluto.
El valor absoluto es una función el cual siempre devuelve un valor positivo. El valor absoluto se denota así:
f(x) = |x|
Y los posibles resultados son:
f(a) = |a| = a
f(-a) = |-a| = -(-a) = a
Lo anterior significa que si el argumento de la función valor absoluto es positivo, entonces la función devuelve su argumento sin tocarlo, si embargo, si el argumento es negativo entonces multiplica el valor del argumento por -1 y se vuelve positivo.
Un ejemplo numérico:
f(5) = |5| = 5
f(-5) = |-5| = -(-5) = 5
Fácil, verdad?
Ahora vamos a complicarlo un poco más, que pasaría si el argumento fuese una función en vez de un valor constante? es decir, que pasaría si se tiene lo siguiente?:
|2x - 1| =???
Pues habría dos posibles soluciones, partiendo de la definición de valor absoluto tendríamos:
|2x - 1| = 2x - 1 si x > 0
|2x - 1| = -(2x - 1) = 1 - 2x si x < 0
Y listo, problema resuelto. Pero el valor absoluto también se presente con desigualdades:
|x - 7| < 4
Como crees que se podría resolver esta desigualdad?
Pues de nuevo, partimos de la de f. de valor absoluto:
|x - 7| < 4 ==> x - 7 < 4 si x > 0
|x - 7| < 4 ==> -(x - 7) < 4 ==> 7 - x > -4 si x < 0
Fíjate lo que paso en la última desigualdad. Cambió el signo. Por qué? pues por que multiplicamos por -1 y cuando hacemos esto el signo de la desigualdad se invierte. Es decir si tenemos algo así:
x < 7 y multiplicamos por -1 quedaría:
-x > -7

EJEMPLOS: 

aquí les dejo un link de valor absoluto

http://www.youtube.com/watch?v=LT4iM0DVnr0





1 comentario:

  1. Y no hay uno que tenga el paréntesis dentro del valor absoluto
    post: es para una tarea

    ResponderEliminar